Triangulated quotient categories arising from extriangulated categories
نویسندگان
چکیده
منابع مشابه
Quotient Triangulated Categories
For self-orthogonal modules T , the quotient triangulated categories D(A)/K(addT ) are studied, in particular, their relations with the stable categories of some Frobenius categories are investigated. New descriptions of the singularity categories of Gorenstein algebras are obtained; and the derived categories of Gorenstein algebras are explicitly given, inside the stable categories of the grad...
متن کاملQuotient Triangulated Categories Arising in Representations of Algebras
Several kinds of quotient triangulated categories arising naturally in representations of algebras are studied; their relations with the stable categories of Frobenius exact categories are investigated; the derived categories of Gorenstein algebras are explicitly computed inside the stable categories of the graded module categories of the corresponding trivial extension algebras; new descriptio...
متن کاملTriangulated Categories of Gorenstein Cyclic Quotient Singularities
We prove there is an equivalence of derived categories between Orlov’s triangulated category of singularities for a Gorenstein cyclic quotient singularity and the derived category of representations of a quiver with relations, which is obtained from a McKay quiver by removing one vertex and half of the arrows. This result produces examples of distinct quivers with relations which have equivalen...
متن کاملTriangulated Categories and Stable Model Categories
X id → X → 0→ · For any morphism u : X → Y , there is an object Z (called a mapping cone of the morphism u) fitting into a distinguished triangle X u − → Y → Z → · Any triangle isomorphic to a distinguished triangle is distinguished. This means that if X u − → Y v − → Z w −→ X[1] is a distinguished triangle, and f : X → X, g : Y → Y , and h : Z → Z are isomorphisms, then X′ gu f −1 −−−−→ Y ′ hv...
متن کاملLocalizations in Triangulated Categories and Model Categories
Recall that for a triangulated category T , a Bousfield localization is an exact functor L : T → T which is coaugmented (there is a natural transformation Id → L; sometimes L is referred to as a pointed endofunctor) and idempotent (there is a natural isomorphism Lη = ηL : L → LL). The kernel ker(L) is the collection of objects X such that LX = 0. If T is closed under coproducts, it’s a localizi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SCIENTIA SINICA Mathematica
سال: 2018
ISSN: 1674-7216
DOI: 10.1360/n012017-00212